

35th Annual International Conference of

the IEEE Engineering in Medicine and Biology Society in conjunction with 52nd Annual Conference of Japanese Society for Medical and Biological Engineering (JSMBE)

At Osaka International Convention Center, Osaka, Japan, July 3-7, 2013

VIEEE EMB () JSMBE

Automated Measurement of Skull Circumference, Cranial Index, and Braincase Volume from Pediatric Computed Tomography

Kirk Smith, David Politte, Member, IEEE, Gregory Reiker, Member, IEEE, Tracy S. Nolan, Charles Hildebolt, Chelsea Mattson, Don Tucker, Fred Prior, Senior Member, IEEE, Sergei Turovets and Linda

J. Larson-Prior Member, IEEE

Normative Pediatric Skull Metrics

- Beneficial for multiple disciplines
 - Plastic Surgery
 - Normal vs deformed, surgical planning
 - Neurology
 - Epilepsy presurgical evaluations
 - Anthropology
 - Human evolution, models of skeletal change
 - Electrical/Optical source imaging models
- Aided by development of automated measurement techniques

POTENTIAL DATA SOURCES

Clinical Magnetic Resonance Imaging (MRI)

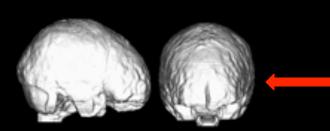
- Commonly acquired for head trauma and/or pathology
- Often requires sedation in young children
- Does not provide good definition of bone

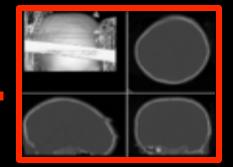
Clinical Computer Tomography (CT)

- Provides high fidelity representations of craniofacial bone
- Preferred modality for imaging bone
- Ionizing radiation is used; concerns raised in children
- Head CT is acquired in head trauma cases to rule out fracture/ hematoma
- Negative CT results with clinical signs justifies MRI
- Clinically acquired CT often read as 'normal'

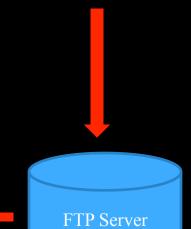
STUDY DESIGN

- Subset of a large retrospective study population (n=21)
- CT scans all radiologically normal
- Evaluations of skull morphology based on
 - \circ Braincase volume
 - Skull circumference
 - Cranial/Cephalic index
- Current methods depend on interactive analyses which are time consuming
- Focus on development of automated extractions
- Compare automated results to those obtained with semi-automated methods


STUDY METHODS: DATA COLLECTION

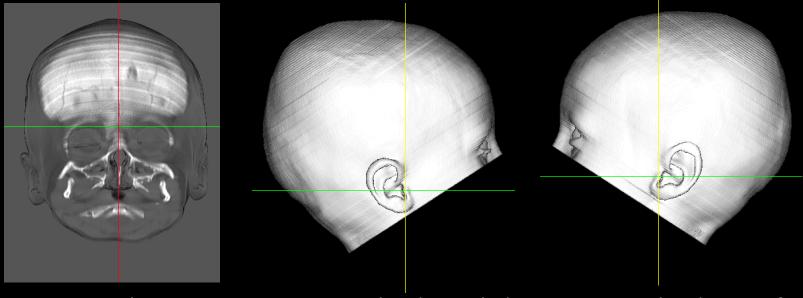

RisSearch Query

Philips iSite Viewer



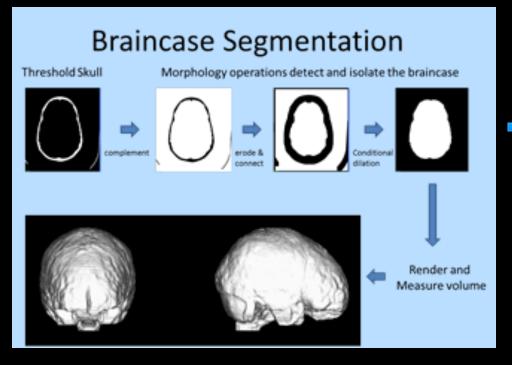
Segmentation

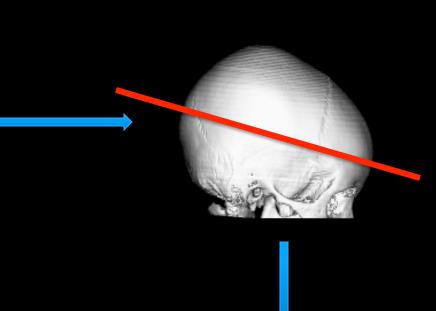
Anonymization


Elle Yew Action Help			
Device Studies			
Patient Name Patient ID	StudyDate StudyID StudyDrigin	Accession Nodelty Series Images Modified Study Description	
Acr-Qc ACR-QC	10.07.2004 14702 colore	NR 2 12 2004.10.20 13 ACR-QC 9/8/0	
ORVIDSON'U. GE1115	06.08.1995 29172 ERL	GE0006 NR 2 10 200410.0515 HE/1389	
Patient Name	Study Drigin		
DAVID SON VIOSHUA		Connil Dianges	
Patent ID	Study ID	Commi Changes	
GE1115	29172	Esport	
Study Date 19990608	Modally MB	_	
Accession Number	Study Description		
GE 0005	HE/13359		
<[
Ready			NJA

Co-registration

STUDY METHODS: PREPROCESSING

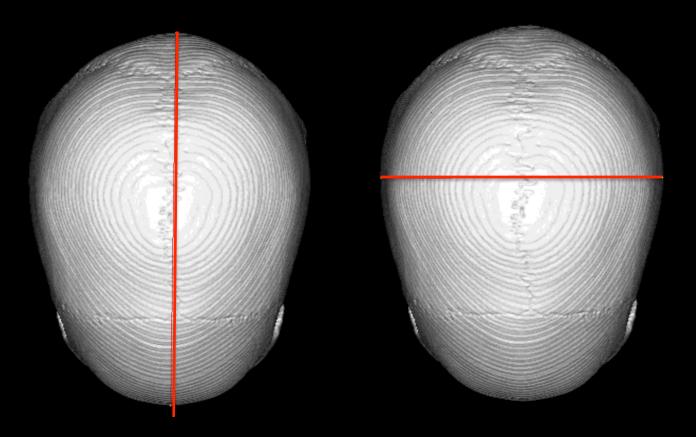

- Convert DICOM data to Analyze 7.5 format
- Resample CT Data (0.5 mm³ voxels)
- Define Landmarks on CT data



Nasion Pre Auricular Right Pre Auricular Left

• Transform to common axial plane (automated rigid body transformation

STUDY METHODS: PROCESSING



- Global threshold for skull/scalp boundary
- 3D rendering of extracted skull
- Head aligned to common coordinate system
- Cutting plane intersects frontal and occipital poles
- Circumference measured in cutting plane

STUDY METHODS: PROCESSING

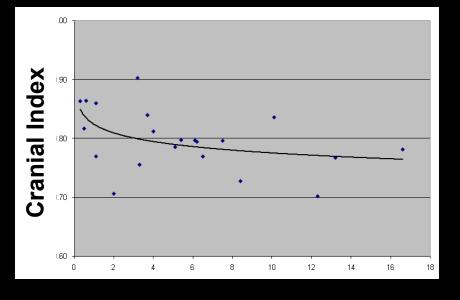
Cranial Index = Skull width/length * 100%

Automated fit for max x, y, z dimensions

STUDY RESULTS

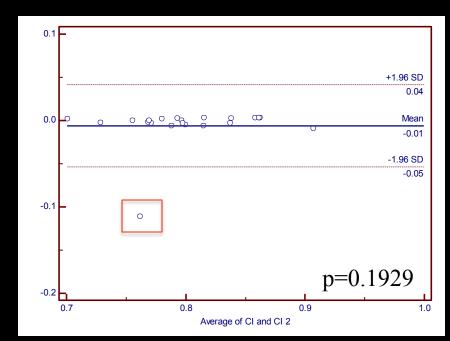
Data were analyzed using two methods:

- Semi-automated (gold standard)
 ANALYZE
- Automated (test)
 - o MATLAB

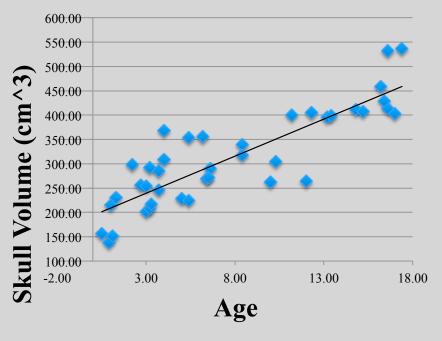

Measures of interest:

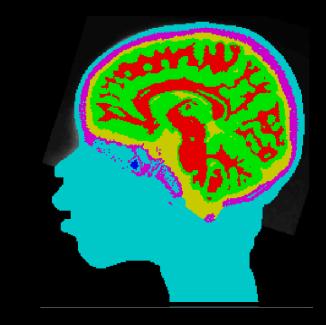
- Cranial index
- Braincase volume
- Skull circumference

Statistical Analysis:


- Shapiro-Wilk W test for normality
- Wilcoxon signed-rank test for non-normally distributed
- Display using Bland-Altman plot of mean difference and 95% limits of agreement

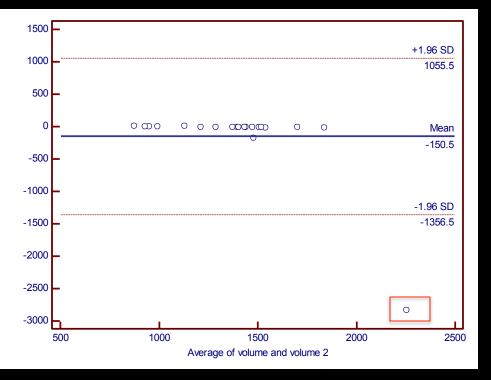
RESULTS: CRANIAL INDEX


- No significant difference between methods
- One outlier –transcription error in semi-automated method.


Cranial Index Scales with age Both length and width increase with head shape becoming more oval

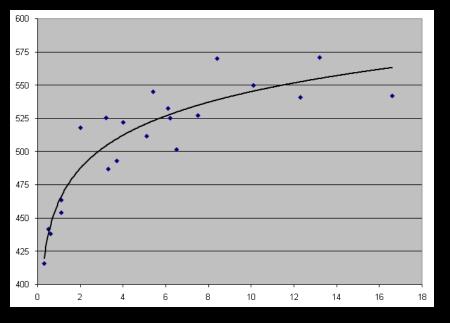
RESULTS: BRAIN VOLUME

Skull Volume vs. Age

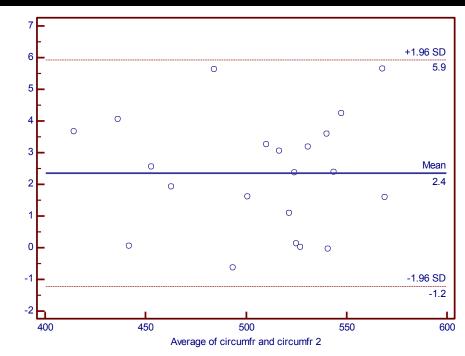


Volume scales linearly with age

- n=41 ages 0.5-18
- MRI segmentation (BrainK, EGI)


RESULTS: BRAINCASE VOLUME

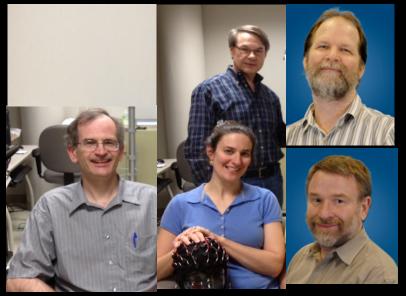
- Wilcoxon signed rank test (data non normally distributed)
- Measures were significantly different p = 0.0001
- Outlier, PV3015 failed automated BC segmentation
- Bias of -150 cm³ for automated drops to -10 cm³ PV3015 removed


Semi- automated	Automated (brain_calc)	Differences
1428.9	1442.3	-13.4
946.1	950.6	-4.5
1391.6	1401.8	-10.2
1826	1846.8	-20.8
1433	1445.2	-12.2
1468.9	1478.7	-9.8
1393	1564.3	-171.3
1500	1513.2	-13.2
1693.3	1705.3	-12
1530	1550.1	-20.1
877.4	872.7	4.7
991.8	991.2	0.6
928	930	-2
839.5	3670.8	-2831.3
1284	1292	-8
1513.3	1524.1	-10.8
1133.5	1127.8	5.7
1430.3	1436.6	-6.3
1369.8	1374.4	-4.6
1208.6	1215.4	-6.8
1395.6	1409.2	-13.6

RESULTS: SKULL CIRCUMFERENCE

- Paired t-test
- Significant difference (p = 0.0001)
- Differences not clinically meaningful (max 5.6 mm)
- Bias of 2.4 mm with automated measures slightly smaller

Skull Circumference Scales with age


CONCLUSION

- Automated MATLAB based metrics are in good agreement with semi-automated ANALYZE based metrics
- Automated procedures can fail for certain cases, so image review and range checks should be performed
- Automated metrics in MATLAB do not require a trained operator, eliminates potential transcription errors, and saves valuable man hours
- Open source automated methods will contribute difficult to obtain measures of normal pediatric skull morphology and add them to the paucity of existing data
- https://mirgforge.wustl.edu/gf/project/normalcy/

ACKNOWLEDGEMENTS

Study team:

University of Oregon **Neuroinformatics Center**

Chelsea Mattson Kyle Morgan Jasmine Song

Greg Reiker

National Institute of **Neurological Disorders and Stroke**

National Institutes of Health

Reducing the burden of neurological disease...