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ABSTRACT 

Electroencephalography (EEG) is a brain imaging technology that is noninvasive, cost 
effective, and provides millisecond temporal resolution. Improved spatial resolution of EEG 
measures can benefit multiple clinical and research applications, including the assessment of 
Traumatic Brain Injury (TBI), stroke, and neurodevelopmental disorders. Recent advances in 
electrode arrays have made it feasible to achieve dense array sampling (128, 256 and 512 
channels) of brain potentials on the head surface, and then localize the sources of the measured 
fields to the surface of the cortex to provide spatially resolved information. Accurate dense array 
source localization requires i) moving beyond simplistic models of the human head (such as 
homogeneous multi-shell spheres) and ii) accurate knowledge of regional conductivities of head 
tissues. These requirements are particularly important for children because the size, shape and 
electrical properties of the head tissues undergo rapid developmental changes from infancy 
through adolescence. In this paper we apply high performance computing with finite difference 
methods (FDM) to solve the forward EEG problem with skull and head conductivity models that 
are appropriate for children as well as adults. We show that the improved structural (MRI and CT 
based) head models may improve high-resolution EEG source localization by correcting 
systematic biases in EEG source localization due to conductivity misspecifications and structural 
uncertainties. We also demonstrate how these same advances in electromagnetic head models may 
be used to model effects of non-invasive brain stimulation such as Transcranial Magnetic 
Stimulation (TMS) and Transcranial Electrical Stimulation (TES). 
 

Keywords: EEG, pediatric, atlases, models, source localization, MRI, CT, SEP, mismatch 
 
 

                                                        
 Correspondence: Sergei Turovets, PhD, Electrical Geodesics, Inc., 1600 Millrace Dr. Suite 200. Eugene, OR, 97403, USA 

E-Mail: sturovets@egi.com. 



Jasmine Song, Kyle Morgan, Sergei Turovets et al. 

 

276 

INTRODUCTION 

Electroencephalography (EEG) provides important information on brain activity for a range of 
applications, including research on normal cognitive development in children, brain monitoring of 
neonates in intensive care, and early detection of brain pathology such as epilepsy. In adults, imaging 
technologies may use ionizing radiation (computed tomography (CT) or radionucleotides (positron 
emission tomography (PET), single photon emission tomography (SPECT), or they may require that 
the subject remains still during image acquisition (magnetic resonance imaging (MRI) or CT). In 
children, radiation exposure and sedation are particularly problematic. Better spatial resolution for the 
inexpensive and noninvasive EEG measure, such as through accurate source localization, could 
improve both research and health care [1]. A fundamental limitation to the use of source localization 
techniques lies in the relatively sparse sensor arrays used in standard EEG monitoring systems (19-21 
electrodes in the standard 10-20 system). These conventional recording arrays provide inadequate 
spatial coverage [2] both in terms of the inter-electrode distances (~5 cm) and the coverage of basal 
regions of the head [3]. Many laboratories now acquire data from dense arrays of 64, 128, or 256 
channels [4]. By increasing the spatial sampling of the volume and decreasing the inter-electrode 
distance, dEEG has been shown to provide a significantly improved spatial resolution from scalp 
recorded data [5]. 

At present, the use and validation of dEEG and Electromagnetic Source Imaging (ESI) in infants 
and children is hindered by the lack of accurate pediatric head models. To generate an ESI solution, 
two independently specified problems must be solved: (1) the forward problem, or volume conduction 
head model, which includes a set of conditions that specify the way in which currents propagate from 
their site of generation at the cortex to the site of measurement at the scalp, and (2) the inverse 
problem. The inverse problem requires mapping the recorded surface potentials to the cortical sources 
space in the volume conductor model, and this is a problem for EEG because it is highly 
underspecified. While many studies have shown that “realistic” volume conductor head models 
generate more accurate ESI solutions [2, 3, 6], the impact of the structural head tissue geometry, 
conductivity specifications, computability and necessity of additional variables such as tissue 
anisotropy or inhomogeneity remain poorly understood [7, 8]. These parameters are particularly 
critical for infants and children, where both shape and density of the skull and the structure of the 
cortex cannot be approximated by adult head models [9, 10]. 

The human skull and brain undergo rapid and significant growth from birth to about 2 years of 
age, with slower but continued growth through the 6th postnatal year [9-11]. Ossification of the skull 
begins at approximately 11 weeks gestational age [12] and is not fully complete until the 3rd to 4th 
decade of life [11]. While adult bone represents a layering of cortical (external and internal) and 
diploic bone, infant cranial bone (birth – 6 months of age) is primarily cortical bone [13]. This 
difference can be expected to lead to a significant change in skull resistivity from infancy to adulthood 
[14]. In addition, the developing skull exhibits large discontinuities, the fontanels (Figure 2a, 3a and 5 
in this paper), which form at the intersection of 3 or more ossifying bone edges. These usually ossify 
over the first 2 years after birth, but the cranial sutures remain incompletely ossified at least until early 
adulthood. The open sutures and fontanels, as well as the unique shape of infant heads, must be 
modeled for accurate source localization [6 -8,18-23]. 

In addition to differences in the bony cranium, significant changes in brain volume, regional 
tissue composition and ventricular volume are seen in infants and children. The few imaging studies 
of normal brain development in children from birth to 2 years report that this is a period of significant 
dynamic micro- and macro-structural change [9,10]. During this period, brain volume increases 115%, 
lateral ventricular volume increases an amazing 288%, and white matter volume, a reflection of 
axonal myelination, increases substantially. This rapid growth trajectory is maintained into the 10th 
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year and is further reflected in differences in fractional anisotropy and mean diffusivity across the 
developmental period [15]. The importance of including age-specific regional brain anisotropy is not 
fully understood. The human brain exhibits large changes in regional anisotropy between the ages of 
0-9, in addition to major changes in brain and tissue volumes from ages 0-2 that almost certainly are 
of critical importance to accurate modeling. In the course of creating accurate and useful pediatric 
head models, it would be useful to evaluate the age ranges in which changes in brain and tissue 
volume, in addition to regional anisotropies, significantly impact the accuracy of electrical source 
localization. 

 Several studies have addressed the issue of conductivity parameter misspecifications in adult 
head models including anisotropy and inhomogeneity. The effects of these parameters have been 
studied using analytic forward solutions in multi-shell spheres or MRI-based boundary element 
models (BEM) and finite element models (FEM) [18, 19, 38]. For example, Pohlmeier et al. [20] 
showed that by using an equivalent dipole approach (continuous dipole fit) one can obtain up to a 6 
mm error increase with 20% skull misspecifications in both spherical and realistically shaped models. 
The uncertainty in the reported skull conductivity data range, in fact, can be up to a factor of 10. On 
the other hand, simulations by Huiscamp et al. [21] showed source localization error up to 20 mm for 
conductivity misspecification. More recently, Acar and Makeig [22] reported effects of forward model 
variation and mismatch on EEG source localization in adults using the BEM and equivalent dipole 
techniques. They compared models derived from subject specific MR images and models warped to 
digitized individual head shapes from the MNI adult atlases [24] as well as the best fit spherical 
models. The four-layer (warped to electrodes) MNI models were found to be the best approximations 
to the ground truth of the individual head models for four adult subjects. We are unaware of similar 
studies in children across the developmental spectrum, except the paper by Roche-Labarbe et al. [23] 
on neonatal head BEM simulations with structural variations (fontanels, the whole skull layer).  

In our approach, the subject head model geometry is created through: (1) high-resolution 
segmentation of head tissues, (2) cortical ribbon surface extraction with topology correction (to insure 
a correct and continuous surface), and (3) tessellation of the cortical surface (for example, 1 cm 
squares) for dipole seeding. This detailed geometric model is then populated with the estimated 
conductivity for each tissue. At this point the forward model can be used to create the subject specific 
Lead Field Matrix (LFM) by individually activating each current dipole with unit magnitude and 
calculating the resultant scalp electrical potentials at the sensor locations. A complete formal 
description of the forward and inverse problems has been presented previously [1,27, 28, 40]. 

The structural changes that mark the development of the skull and brain are accompanied by 
changes in brain function and cognition [29]. While simple cognitive functions such as processing of 
sensory information and responses to sound and language are present at birth, the integration of higher 
order cognitive coordinating centers such as the prefrontal cortex show a protracted course of 
development [30]. Anomalies in the development of cerebral connections are relevant to a number of 
developmental disorders, including attention deficit hyperactivity disorder (ADHD), autism spectrum 
disorders (ASD) and schizophrenia (SZP). At least some of the characteristic features of these 
disorders have been attributed to disruptions in dynamic neural network interactions [31], a full 
elucidation of which requires neuroimaging with adequate temporal resolution. Although changes in 
network dynamics might be quantifiable using electrophysiological methods alone, the greatest 
benefit would derive from a clear definition of regional components of such networks. For that reason, 
accurate head models that would enable finer scale resolution of anatomical regions involved in 
network interactions using dEEG represent a much-needed tool. Furthermore, such head models 
would aid in the development of non-invasive multi-modal imaging by enabling the co-registration of 
age-specific anatomical images. This need, which is currently being addressed in adult populations, is 
particularly wanting in infants and children.  
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In this paper we conducted a simulation study based on Finite Difference Modeling (FDM) to 
examine the error when a rescaled or warped adult head model, an older child’s head model, or 
inaccurate skull conductivities, are used in pediatric ESI. Specifically, we analyzed several pediatric 
head models based on: (1) the reference model, a 6 month old infant MRI co-registered with the 
infant’s own CT; (2) the same MRI with warped adult CT atlas skull, with no fontanels but with 
adjusted thickness; (3) a child head model from a preschool age group warped to the 6 month old 
infant head shape; (4) a child head model from a teenage group warped to the reference infant head 
shape; and (5) an adult male head model warped to the reference infant head. 

In contrast to previous studies, where a skull compartment was derived from MRI, we used the 
infant’s or children’s own CT in all models. The CT provides an excellent representation of bone 
structure and density of the skull, the most resistive tissue of the head and therefore having the largest 
impact in electrical modeling. All models have differentiated five tissue layers: scalp, skull, CSF, 
brain grey matter (GM) and white matter (WM), as well as internal air pockets in sinuses and throats. 

The effects of geometry variations (such as the presence or absence of fontanels) and the skull 
conductivity variations were also examined systematically. All models were analyzed for six skull 
conductivity values, ranging from the lowest value reported in the literature 0.004 S/m through the 
average adult value 0.018 S/m to the average scalp conductivity (effectively no skull). The "synthetic 
ground truth" EEG was generated separately in each model for the “true” conductivity value. In the 
model mismatch studies, the ground truth EEG was generated in the reference infant model. Inverse 
solutions were examined in the true, warped, or modified models using minimum norm (MN) and 
sLORETA methods of distributed linear inverse source localization [8]. In addition, we examined the 
impact of different resolutions in medical images and FDM computation on ESI accuracy comparing 
the source localization results in the reference infant models for 0.5 mm, 1 mm, and 2 mm FDM 
resolutions. Finally, we illustrated the impact of model mismatch on source localization accuracy with 
a Somatosensory Evoked Potential (SEP) experiment with two adults. The mismatched models were 
created intentionally by warping or geometry swapping with a different subject’s head model. 

METHODS 

All research retrospective and prospective protocols involving human subjects were approved by 
Institutional Review Boards (IRB) at both project sites (Eugene, OR and Saint Louis, MO), with 
informed consent obtained from the subjects recruited in the prospective studies. Figure 1 summarizes 
the head model creation, data collection, and model analysis path. Each of the steps starting with 
structural anatomical data and ending with source localization on cortex is outlined in Figure 1 and 
described in detail below. 

MRI and CT data collection: The reference models of soft head tissues for adult subjects were 
derived from T1-weighted MR images of the heads of a 36-year-old healthy Asian male (subject A1) 
and two healthy Caucasian males: a 42-year-old (subject A2), and the Atlas Man (subject A0, also 
known as Colin27 at the MNI website [24]). The first two images were obtained with a 3T Allegra 
and the third with 1.5 T Magnetom Symphony scanners (Siemens Healthcare, Erlangen, Germany). 
The bone structure for these three subjects was derived from CT scans recorded with a GE CT scanner 
(General Electrics, Fairfield, United States). The acquisition matrix was 256 × 256 × 256 with a voxel 
size of 1mm × 1mm × 1mm in both the CT and T1 scans. 

Retrospective pediatric CT and MRI data were acquired by data mining the clinical image 
repository of the Washington University BJC Health System in St. Louis, Missouri, United States. A 
query preparatory to research was conducted against a system that indexes Radiology reports [37]. 
This initial query identified 174,000 possible pediatric records. The more focused search on recent 
years 2006-2012 and based on the search string “CT+MR+CH (Children’s Hospital)” was submitted 
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to the repository and yielded 11,000 potentially useful cases. Based on an initial sampling of this data, 
we predicted a 5% acceptance rate of data appropriate for constructing pediatric head models. An 
additional search term indicating head/brain (CT + MR + brain + head + CH) resulted in a total 2,500 
exam reports. Search criteria were iteratively refined by review of radiology report text for actual 
presence of both MRI and CT scans, and by no more than a 6 month time interval between the two 
scans. As a result, 385 subjects were selected for retrieval and visual examination using a research 
PACS (Philips Healthcare, Andover, MA). Exclusion criteria were further refined through visual 
inspection for gross anomalies, resulting in data for 131 subjects being selected, de-identified, and 
entered into the study. Further reduction in the subject population occurred during morphometric 
analysis and visual inspection due to factors such as clipped field of view and subtle motion artifacts. 
Ultimately a total of 63 usable pediatric subjects (covering the age range between 0 to 18 years old) 
were entered into analysis. This represents 16% of the 385 subjects that passed initial screening or 
0.04% of the initially identified potential subjects available in the clinical repository.  

 

 

Figure 1. The diagram showing the data and workflow in source localization. MRI and CT may be subject-
specific or warped from atlases. Sensor locations may be also subject-specific from Geodesic Photogrammetry 
System [36], or based on average sensor locations. Conductivities may be estimated [28] or values from the 
literature may be used. Lead fields calculation performed with FDM (this paper) or other known methods (FEM, 
BEM) [7]. Inverse matrix may be one of the published methods, e.g.: Minimum Norm, LORETA, sLORETA 
and LAURA [8]. 

Somatosensory EEG data collection experimental paradigm and recording: Two adult male 
subjects (A1 and A2) were positioned in a comfortable chair with their feet flat on the floor and rested 
their head on a chin-rest to avoid head movement artifacts. Each participant was instructed to remain 
relaxed and refrain from blinking as much as possible while staring at a fixation point throughout the 
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EEG recording. Digit I of the left and right hands were stimulated individually using a custom-made 
piezo-electric stimulator. During the recording, the piezo was lightly taped to the digit of interest, and 
the participant’s hand was placed between two cotton towels to muffle the “tap” sound created by the 
stimulator. The stimulations were segmented into blocks in which each digit was stimulated at a rate 
of 2Hz for 200 seconds, resulting in 400 trials per block. Each digit was stimulated for one block 
before the tapper was moved to the other hand, and then was moved back once, resulting in 4 
staggered blocks and 800 trials per digit. EEG was acquired using a 256-channel array EGI EEG 300 
system and sensor positions were determined using the Geodesic Photogrammetry System (GPS) [36]. 

Head Model Construction: To build anatomically accurate head model geometry, the T1 MRI 
images were automatically segmented into seven tissue types (brain gray matter, brain white matter, 
CSF, scalp, eyeballs, air and skull), and then the CT images were coregistered (or warped) to the MRI 
using EGI’s segmentation and image processing package, BrainK [32,33]. BrainK is a set of 
automated procedures for characterizing the tissues of the human head from MRI, CT, and 
photogrammetry [36] images. BrainK achieves five major tasks: (1) image segmentation, (2) 
registration of head model components (MRI, CT, and EEG sensor positions from Geodesic 
Photogrammetry), (3) cortical surface extraction, (4) tessellation of the cortical surface for oriented 
dipoles, or generation of dipole triples on the gray matter grid, and (5) Talairach transformation (not 
used in the present analyses). BrainK MRI segmentation recognizes the white matter (WM) and the 
gray matter (GM). It partitions these into two hemispheres and it differentiates cerebellum from 
cerebrum. In addition, an entire head mask and the two eyeballs are recognized as well in the 
segmentation component. The eyeballs are important for the electrical head model because of the 
large far fields generated by their cornea-retinal potentials.  

In the development of BrainK, Li [32] introduced a novel Relative Thresholding (RT) method for 
accurate tissue segmentation in the presence of MRI field inhomogeneity. Given the results of RT 
performed on a region of interest (ROI), BrainK also implements a novel sophisticated morphological 
image analysis (SMIA) technique and a cell complex based morphometric image analysis (CCMIA) 
method for white matter extraction, gray matter extraction, scalp extraction, and, topology correction 
of the cortical surface mesh. BrainK uses a priori knowledge (including structural, geometrical, and 
morphological observations on the neuroanatomy, and radiological observations on the structural 
imaging) to enable automated, accurate, and fast segmentation (performed by a trained technician in 
20-30 minutes).  

Once the initial tissue segmentation has been conducted, there are several workflow paths that can 
be chosen based on the available subject specific data. Each workflow scenario represents a different 
way in which a skull can be registered. For example, the scenario Atlas to MRI is used when an 
individual CT scan is unavailable but an individual T1 MRI is. In this scenario, an adult atlas skull 
will be registered to the MRI geometry and will act as a guide for bone placement within the head. 
Due to the developmental differences in skull geometries in infants (i.e. presence of fontanels), an 
individual CT is always preferred. In this study, the workflow CT to MRI was used to generate all 
subject specific head models; a scenario that takes a subject’s own CT and warps it to the geometry 
defined in the MRI. In all scenarios, when the skull registration is conducted, the resulting head 
segmentation includes the following tissue types: WM, GM, CSF, bone, flesh, eyeball and air, in 
which the WM and the GM are further partitioned into two cerebral hemispheres and the cerebellum 
(Figure 2a).  

For all workflow scenarios, following skull registration, a generic Geodesic Sensor Net spherical 
sensor cloud is warped onto the head contour of the subject. For the scenarios of Atlas to MRI, MRI to 
CT, and CT to MRI, an additional sensors-to-head registration procedure is conducted to register the 
EEG sensor position cloud onto the head surface using several fiducial landmarks. For the scenario 
Atlas to EEG sensors, an individual sensor cloud from Geodesic Photogrammetry acts as a template 
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for which any given head model warps to the physical positions of the sensors measured with 
photogrammetry. This allows users to rescale a generic head model atlas to the individual’s actual 
head shape. A head model (one that has a full brain segmentation and skull registration) is required to 
be completed before sensor transformation can be accomplished.  

After sensor registration, dipoles are allocated in two modes: oriented or triples. If the 
individual’s MRI is available, the cortical surface is extracted, tessellated into patches, and an oriented 
dipole is fitted to the vector sum of the normals of all the triangles in the surface mesh of each patch, 
thereby describing an equivalent dipole model for that surface patch. If the individual’s MRI is not 
available, then triple dipoles (fitting x, y, z components of the unknown orientation) are distributed 
evenly throughout the cortical gray matter of an atlas brain on a regular grid with a user specified 
spacing (typically 7 mm or 5 mm).  

 

 

Figure 2. (a) BrainK Segmentation and CT to MRI coregistration differentiating scalp, skull, CSF, GM and 
WM in model C1 (a 6 month old subject). (b) A 128 sensor net registered on the same infant head. (c) 
Cortical surface generated. (d) Oriented dipoles set assigned to each cortical.   

Forward Problem: The relevant frequency spectrum in EEG and MEG is well below 1 kHz, and 
most studies deal with frequencies between 0.1 and 70 Hz. Therefore, the volume conduction in 
EEG/MEG can be well described by the quasi-static approximation of Maxwell’s equations, the 
Poisson equation. The electrical forward problem can be stated as follows: given the positions, 
orientations and magnitudes of current sources, as well as geometry and electrical conductivity of the 
head volume Ω calculate the distribution of the electrical potential on the surface of the head (scalp) 
ΓΩ. Mathematically, it means solving the linear Poisson equation [7]:  

 
 ()=S, in    (1) 
 

with no-flux Neumann boundary conditions on the scalp:  
 

()  n = 0, on ΓΩ .   (2) 
 
Here  = ij(x,y,z) is an inhomogeneous tensor of the head tissues conductivity and S = -I ( r-r+) 

+I ( r-r-) is the source current configuration constructed in the simplest case from a source and a sink 
of strength I at the vector locations r+ and r- . Having computed potentials (x,y,z) and current 
densities J=- (), the magnetic field B can be found through the Biot-Savart law. In this paper, we 
do not consider anisotropy or capacitance effects (the latter because the frequencies of interest are too 
small), but they can be included in a straightforward manner. Eq. (1) becomes complex-valued, and 
complex admittivity should be used [7, 38]. 
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Lead Fields Calculations and Numerical Implementation: Lead Fields are defined as forward 
projections of unit strength dipoles’ potential fields from cortex to scalp sensors. It is a matrix with the 
dimension: number of sensors (typically 256 or 128) by number of dipoles (typically 2400). The EEG 
session specific LFM requires a session specific set of sensor coordinates. A generic LFM for a given 
subject head volume can be calculated for more dense coverage of scalp (several thousand points) and 
then potentials for session specific sensor locations interpolated from this generic LFM on scalp. It 
can be accomplished by the “brute force” approach launching separately the forward solver for each 
dipole position. However, one can reduce the required number of forward solutions drastically by 
using the reciprocity principle for LFM calculations [7, 38, 40]. We have implemented both these 
approaches as they can be parallelized effectively in a multi-core cluster environment or desktops with 
modern Graphic Processing Units (GPUs: http://www.gpgpu.org/). 

To solve Eq. (1) numerically we built a finite difference forward problem solver for the volume 
conduction based on the multi-component alternating directions implicit (ADI) algorithm [27,28, 40]. 
The numerical method is a generalization of the classic ADI algorithm, but with improved stability in 
3D. We chose the FDM approach over FEM and BEM methods for its simplicity of implementation 
from the MRI/CT tissue segmentation map that produces a cubed lattice of nodes. Therefore, meshes 
are easy to construct (once segmentation is accomplished) as the cubic/rectangular elements can be 
mapped directly from the voxels of the medical images (3D MRI/CT scans), including all relevant 
anatomical details (in contrast to BEM and FEM). 

To set up the boundary conditions in the heterogeneous biological media within a complex 
geometry like the human head, the method of the embedded boundaries is used in FDM. Here an 
object of interest is embedded into a cubic computational domain with extremely low conductivity 
values in the external complimentary regions. This effectively guarantees there are no current flows 
out of the physical area (the Neumann boundary conditions, Eq. (2), is naturally satisfied). The 
forward computations using high resolution structural models and the inverse conductivity search, 
which is composed of multiple forward solutions, represent computationally intensive tasks and 
require high performance computing. The electrical forward and inverse conductivity optimization 
models have been implemented in a parallel C/C++ code (OpenMP and MPI) and CUDA to run on 
multi-core cluster and GPGPU platforms [27,40]. 

EEG Source Localization: Estimating the source of EEG with distributed source models consists 
in first, allocating a grid of unit strength dipole sources with fixed locations and orientations in the 
whole brain volume or on the cortical surface, computing LFM for this dipole set, and then, estimating 
inverse solution for amplitudes of dipoles on this grid using the computed LFM and the scalp EEG 
data. For fixed positions and orientations, at a given time, the relation between source moments and 
the data can be stated as:  

 
  KJ  ,   (3) 

 

where ° Ne1
 is the electric potential;J ° N j1

 is the (unknown) amplitude and orientation of 

source distribution;K ° NeN j
 is the lead field matrix linking the current sources to the electric 

potential;  ° Ne1 is the additive noise component (perturbation); Ne is the number of electrodes;

Nj  is the size of source distribution; Nd  is the number of dipoles.  

Estimating the source amplitudes consists in solving this noisy linear system. Considering the 

physics of data formation in EEG, source estimation is ill-posed (Ne = N j ). For a given data set, 

there is no unique source distribution. Further, after discretizing to a limited number of sensors, the 
corresponding K operator is ill conditioned, thus the solution is highly sensitive to small perturbations 
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in data and the model. This problem belongs to the linear ill-posed inverse problems. Methods for 
solving this problem, called inverse procedures, must take regularizing schemes into account to 
prevent the oscillatory behavior of the solutions in presence of noise. 

The basic regularization methods range from constrained Minimum Norm (MN) [2-5,8] to 
minimization of regularized least-square cost functions such as: 

 

Ĵ  argmin
J

 KJ
2 L(J ) ,  

 
where  is a positive scalar that is called the regularization parameter, and balances the data fidelity 

term  KJ
2

and prior term L(J ) ; 
2

represents the square of the l2 -norm. The prior 

regularization operator L(g) contains the priors that one wishes to take into account. For example, this 

operator can be taken in the form of the identity operator, which produces solutions with a minimum 
norm (MN), the gradient or weighted Laplacian operators (LORETA), local autoregressive average 
(LAURA), cortical surface laplacian (CSL), l1 -norm of the source amplitudes. In this paper, the MN 

and  sLORETA [8] methods for the EEG inverse problem are used. The analytic solution for the MN 

method is Ĵ  K T KK T  INe
 

1
 . The sLORETA solution is following: Ĵl

  C
Ĵ

 ll

1/2
Ĵl , 

where Ĵl  is the current density estimate at the lth dipole and C
Ĵ

 ll
 is the lth  diagonal of  

C
Ĵ
 K KK T  INe

 
1

K
,  

for l= 1, …, Nj.  
 

       The distributed inverse problems can be divided into two scenarios. Scenario 1 (triple dipoles) 
estimates an unknown current density distribution, including both orientations and amplitudes of the 

source distribution. Scenario 1 assumes N j  3Nd  
and K ° Ne3Nd  in Eq. (3). The root mean 

square (RMS) 
R  R1,L , RNd

 
T
° Nd1  is defined as Ri  Ji,x

2  Ji,y
2  Ji,z

2  3,  where  

J  J1,L , JNd
 

T
° N j1

,  Ji  Ji,xJi,yJi,z 
T
° 31  , for i  1,L , Nd .  

Scenario 2 (oriented dipoles) estimates only unknown amplitudes of the source distribution given 

known orientations of dipoles. Since Scenario 2 assumes N j  Nd in Eq. (3), there is no need in 

calculation of RMS. 

RESULTS  

Model Warping 

Several head models based on 3 original retrospective pediatric MRI/CT volumes (C1, C2, C3), 
and 3 prospective adult MRI/CT volumes (A0, A1 and A2) were created (see Table 1). The pediatric 
models represent the most distinct developmental age clusters [37]: infants 0 – 2 years old (C1), 
preschoolers 2- 6 years old (C2) and school age children 6 – 17 years old (C3). In most studies 
presented here, an infant model (C1, see Figure 2) for a 6 month-old was chosen as the ground-truth 
reference model. It was compared with derivative models from a preschooler pediatric model (C2) (6 
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years old), a teenager head model (C3) (14 years old), and an adult model (A1) to assess the effects of 
head model mismatch on source estimation results. The notations for those rescaled models (warped 
to the physical size of C1, but retaining the original morphology and having LFMs recalculated) are: 
C2’, C3’, A1’ (see Table 2). We also created a 6 month old model with only the adult skull atlas (A0) 
warped and adjusted by thickness to match subject C1’s specific MRI (notation A0s) and an adult 
mismatched model (A2 warped to A1, A2’). In all cases of warping the older age models to the 
reference infant model C1 the fontanel structure was lost (see Figure 3). 

 

Figure 3. Skulls of three typical geometries. (a) The reference infant model C1 contains frontal and 
occipital fontanels. (b) Skull of the warped model A0s (only skull of A0 warped and adjusted to C1 MRI). 
(c) Skull of the warped model A1’ (the whole adult head rescaled to the infant size). Notice that warped 
models have no fontanels. 

Table 1. The original human subject models 

 C1 C2 C3 A0 A1 A2 
Age (years) 0.5 6 14 NA 36 42 

Gender NA NA NA M M M 
Original MRI/CT yes yes yes yes yes yes 

 

Table 2. Derivative head models 

 C2’ C3’ A1’ A2’ A0s 
Warped Target Model C1 C1 C1 A1 C1 

All Tissue Warped Yes Yes Yes Yes No (skull only) 
Average Literature Values 

for Tissue Conductivity 
Yes Yes Yes Yes Yes 

Derivative LFM Yes Yes Yes Yes Yes 
 
The quality of the warping process can be evaluated based on the data presented in Tables 3 and 

4, which show distances between left and right prearicular fiducial landmarks in the original models 
and after rescaling. The distances after warping match the original C1 model fiducial distance with 
accuracy better than 1% and about 0.1% in warping A2 to A1.  

 

Table 3. Distance between Fiducial Landmarks for Original Head Models 

Model C1 C2 C3 A1 A2 
Distance (cm) 12.24 13.73 14.81 15.88 15.64 

 



Head Models for dEEG Source Localization 

 

285

Table 4. Distance between Fiducial Landmarks for Warped Head Models 

Model C2 C3’ A1’ A2’ 
Distance (cm) 12.20 12.12 12.16 15.90 

 

Effect of Head Geometry Mismatch on Source Estimation Accuracy 

For this evaluation, a forward projection from a dipole source (near the occipital fontanel) 
oriented perpendicular to its corresponding cortical patch was generated (Figures 4a and 4b). For all 
head models used to estimate the source shown in Figure 4a, LFMs were generated using three 
orthogonal moments for each dipole location (“triples”). For all LFM calculations, the following 
conductivity values were used based on the average literature values: 0.46 S/m (scalp), 0.018 S/m 
(skull), 1.79 S/m (CSF), 0.25 S/m (GM), 0.33 S/m (WM).  

To investigate the model mismatch effects we compared estimated source solutions obtained from 
the original model (C1) and the derivative models (C2’, C3’, and A1’). The MN technique was used 
to estimate the sources. The metric employed for source localization accuracy in this paper is the 
localization error distance (LED). The LED is the Euclidean distance between the locations of the true 
dipole and the dipole with maximum intensity in the source estimation. Smaller LEDs represent more 
accurate estimates.  

 

Figure 4. Source estimates as a function of head model. (a) Location of source generator from C1; (b) Forward 
projection of scalp potential for dipole shown in (a); (c) ESI solution obtained with C1 model; (d) ESI solution 
obtained with C2’ model; (e) ESI solution obtained with C3’ model; (f) ESI solution obtained with A1’ model. 

Table 5. LED of ESI solutions as a function of head geometry 

Model C1 C2’ C3’ A1’ 
LED 10.5 mm 16.5 mm 15.6 mm 32.7 mm 
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As shown in Table 5, the LED is minimal when a head model matches the model that generated 
the scalp potential data. When a subject specific head models are not available, the warped older 
pediatric group models (C2’ and C3’) are still reasonable for EEG source localization (LEDs are 
increasing in this case up to 16 mm). The warped adult model, A1’ resulted in the large localization 
error of ~33 mm. 

Effect of Head Model Resolution on Source Estimation Accuracy 

The motivation of this study is the fact that an infant head is about twice as small as an adult head 
and the skull is thinner. Therefore, it is reasonable to expect that a higher resolution model would be 
required for an infant head to match the same finite difference node density per skull voxel in adults 
captured by 1 mm resolution images. Another reason is that a current dipole is approximated in FDM 
as two monopoles at adjacent finite difference grid nodes with the amplitude I (Eq. 1) divided by the 
voxel volume. Therefore, the overall forward projection will be more accurate for the higher FDM 
resolution. Resampled subject C1 head volumes were created from the original 1 mm resolution C1 
head model. In order to manipulate image resolution of the original head model (.88 mm × .88 mm × 
.9 mm), each voxel of the post-processed data is either merged with its 6 neighboring voxels or 
subdivided into 8 separate voxels, thus decreasing and increasing image resolution respectively 
(Figure 5). 

 

 

Figure 5. Head models of a 6-month-old infant (C1) at 2 mm (left), 1 mm (center) and 0.5 mm (right) 
resolutions. Sagittal slices (top), sensors on scalp (bottom). 

When decreasing resolution, sets of merged voxels were given a uniform tissue type based on the 
tissue type that was most common amongst the group before the merge. Due to aliasing, dipoles that 
were located in WM as a result of voxel merging were automatically deleted and not used for analysis. 
When increasing resolution, the subdivided voxels were assigned a single tissue type that matches the 
tissue of the voxel from which they were derived. 
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Figure 5 shows the effect of the mesh resolution variations for the reference infant model, C1. 
Sagittal slices show the different FDM grid voxel size of 2 mm3, 1 mm3, and 0.5 mm3. It can be seen 
in Figure 5 that reduction of resolution to 2 mm leads to visible bumps on the scalp surface (bottom 
left corner) and disruption in skull morphology (upper left corner sagittal view), as the actual 
anatomical resolution was decreased in this case along with FDM resolution, while transition from the 
original 1 mm resolution to the interpolated 0.5 mm resolution simply made FDM grid denser but 
actually did not improve the original image resolution. In this evaluation, the same 128-sensor 
positions were registered to all three C1 resolution models. A forward projection for one dipole 
(Figure 6a) using the 0.5 mm resolution model served as the ground-truth location. The forward 
projections (lead fields) of this dipole in three resolution cases were calculated and plotted versus 
sensor number (Figure 6b).  

 

 

Figure 6. Resolution variation effects on source localization: (a) ground truth dipole location near the occipital 
fontanel on the cortex; (b) forward projection of potentials to EEG sensors (128 channels) as a function of model 
resolution; (c-e) 3D views of forward projections to scalp; (f-h) ESI solutions (sLORETA) as a function of 
model resolution. 

One can see that the dipole projection to the scalp is tighter (the full width at half maximum 
(FWHM) is smaller) for the 0.5 mm resolution, while projections of the same dipole forward fields at  
1 mm and 2 mm are more diffused as expected. The ESI solutions (Table 6) using the sLORETA 
technique derived from the 0.5 mm resolution model correctly localized the dipole (LED is 0 mm, no 
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resolution mismatch). The source distributions for the lower resolutions are more diffuse, as expected 
(the error is of 12 mm for this dipole in both mismatched resolutions). 

 

Table 6. LED of ESI solutions as a function of model resolution 

Model Resolution 0.5 mm 1 mm 2 mm 
LED 0 mm 12.15 mm 11.91 mm 

Effect of Tissue Conductivities on Source Estimation Accuracy 

To evaluate how inaccurate assumptions of tissue conductivities will impact ESI solutions, LFMs 
were generated for three different models (C1, A0s, and A1’) while varying the skull conductivity 
(which is the most resistive tissue) across six values (0.004 S/m, 0.018 S/m, 0.1 S/m, 0.2 S/m, 0.35 
S/m and 0.45 S/m). This resulted in 18 LFMs. The model with skull conductivity set to 0.1 S/m in 
each model (assuming that infant bones are more conductive on average than in adults) served as the 
ground truth. From the ground-truth model, forward projections were generated for each dipole and 
ESI solutions were derived using MN and sLORETA. The LEDs presented in Table 7 represent the 
mean LED (i.e., averaged ESI solutions for all dipoles) for each condition. 

 

Table 7. Errors of ESI depending from conductivity and/or model mismatch. The mean LEDs are 
given in mm. The ground truth LFMs for skull conductivity of 0.1 S/m results in the minimal LED in 
all three geometries with both MN and sLORETA. 

Method Head 
Geometry 

Skull Conductivity (S/m) 
0.004 0.018 0.1* 0.2 0.35 0.45 

MN C1 17.25 15.49 15.06 15.12 15.19 15.19 
A0s 18.42 16.22 15.18 15.34 15.39 15.46 
A1’ 19.75 18.26 13.97 14.98 16.27 16.63 

sLORETA C1 3.72 0.27 0 0 0 0.003 
A0s 7.63 1.14 0 0 0.017 0.066 
A1’ 10.56 4.60 0 0.08 0.54 1.045 

 
 
As can be seen, LED is minimal for both MN and sLORETA solutions when the conductivity 

values used in the head model matches with those used to generate the synthetic EEG data. Use of the 
head models with the correct skull conductivity values results in the minimal LEDs. When skull 
conductivity is set to be low (skull is more resistive), the LEDs are larger. On the other hand, when 
skull is effectively replaced bypio soft tissues (conductivity values approaching conductivity of 
surrounding tissues), the effect is small. The steepest change in LED was observed in the range of 
conductivities between 0.004 S/m and 0.1 S/m and more pronounced for the rescaled adult head 
models, A1’.  

We believe this is due to the fact that the relative skull thickness of adult model A1, even after 
rescaling, is larger than in the reference infant model C1, therefore the thicker skull conductivity 
misspecifications have more impact on the forward solution. 
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Model Mismatch in SEP experiment 

This experimental EEG study was motivated by the need to verify our simulation studies. The 
expected brain activation regions in SEP experiments are generally well known from human brain 
anatomy and can be further confirmed by an independent fMRI study (ROI in Figure 7). The dEEG 
data was processed using Net Station Version 4.5.5 software (Electrical Geodesics, Inc, Eugene, 
United States). Each subject’s data was filtered using a 60 Hz high-pass FIR filter prior to visual bad 
channel replacement. Manually marked bad channels were replaced using spherical spline 
interpolation. Data was segmented into 300 ms stimulus-locked epochs from 100 ms prestimulus to 
200 ms poststimulus. The ERPs were then averaged and corrected to a 100 ms baseline. Channels 
contaminated with eye or movement artifacts were identified by a computerized algorithm and were 
eliminated. Following computerized bad channel replacement, data were  mean corrected and 
referenced to vertex (Cz). ESI using the sLORETA technique was performed on the ~10 ms time 
window just before the peak of P50 SEP component.  

Figure 7 shows the ESI solutions for subject A1 and A2 (sLORETA regularization constant of 
0.1). In both subject specific models, clear congruency can be seen in source localization relevance to 
their predefined anatomical ROI. For subject A2 specifically, the S1 thumb region appears to be 
functionally defined along the posterior and anterior banks of the postcentral gyrus. In order to 
demonstrate the importance of head geometry on ESI solutions, we generated a new head model, A2’. 
This model was applied to the SEP data used for the A2 solution. Figure 7, top right corner shows the 
results. Notice that the bulk of electrical activity has shifted from the posterior and anterior banks of 
the postcentral gyrus (S1) to the center of the postcentral gyrus and posterior bank of the precentral 
gyrus (M1) even though the physical contours of the brain have been unchanged.  

 

 
Figure 7. Effects of model mismatch on SEP localization. Top row left to right: subject A2 
highlighted anatomical ROI, A2 model specific ESI solution, A2’ ESI solution for A2 SEP data 
(mismatch). Bottom row left to right: A1 highlighted anatomical ROI, A1 model specific ESI 
solution, A1 ESI solution for A2 SEP data (mismatch).    

 
Finally, we aimed to show what would happen when EEG data is localized to another subject’s 

head model. As can be seen in Figure 7, bottom right corner, EEG data from subject A2 was localized 
in the individual head model of A1, using the same time point and activity as above. As in the 
previous mismatch, the bulk of electrical activity has shifted away from the ROI defined for A2, only 
this time the activity has shifted ventrally (more toward the functional location of subject A1’s 
thumb). 
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DISCUSSION AND CONCLUSION 

The present study demonstrates the importance of accurate physical measurement of head 
geometry and conductivity for accurate electrical source localization of dense array EEG. Particularly 
for infants and young children, using rescaled adult electrical head models produces inaccurate results. 
On the other hand, if the geometry of the child’s head is approximated, such as through warping an 
older child’s model to the child’s head shape (Figure 4), the source results are a reasonable 
approximation to what can be gained from using the individual’s MRI and CT.  

 Anatomical data for constructing electrical head models, based on MRI and CT images for a 
range of age, gender, and ethnicity groups are becoming more readily available [24- 26]. Using these 
data to create head model atlases with appropriate conductivity specifications is an important near 
term goal. Given appropriate conductivities, electrical head atlases can be constructed for a look-up 
repository across the developmental range (from infancy to old age) and across gender and racial 
groups. To adjust these atlases to a specific subject, a warping procedure to the subject’s own head 
shape (measured noninvasively such as with photogrammetry [36]) can be used and give reasonably 
accurate results, as suggested by the analyses above. 

One approach for gaining accurate head conductivity for each age, sex, and racial group is to use 
electrical impedance tomography (EIT) for head impedance scanning (impedance is the reciprocal of 
conductivity). In this approach, harmless currents are injected into the head, and the potential field 
(“impressed EEG”) created by volume conduction of this current through head tissues is measured [1, 
14, 27, 28, 34, 35]. From the impressed EEG and the known position of the injected current on the 
scalp, properties of the head tissue can be inferred through Ohm’s law. 

Ideally, subject specific electrical models based on native MRIs and CTs structural information 
and informed with tissue conductivity specifications are the best choice for the most accurate ESI. 
However, MRIs and CTs are not usually available for many adult subjects and the majority of infants 
and young children. In such cases, as we have shown on example of pediatric models, one can use a 
reasonably close by age atlas model and warp it to the subject specific EEG sensor positions cloud 
(obtained noninvasively with photogrammetry). Adult models rescaled to the infant size are not a 
good choice due to the far distant morphology (which makes conductivity uncertainties’ impact 
amplified as well), producing as a result localization errors up to 3 cm. We have shown previously 
[28] that conductivity fitting to experimental impressed EEG is feasible. The actual conductivity 
values for infant skull are not well known presently, but unlikely to be in the adult range of low 
values. Therefore further studies are needed for practical noninvasive estimation of head impedance 
for regional tissue conductivity estimates in infants. 

In addition to EEG, there are several other applications for which accurate (preferably subject 
specific) models of head-shape, tissue boundaries and tissue properties are required. These range from 
biomechanical models of cranial injury to imaging techniques such as MEG and EIT [1,8,16,28]. With 
the addition of optical diffusion equations and tissue parameters to the FDM framework, the child 
head model database can be extended to diffuse optical tomography (DOT) and Near Infrared 
Spectroscopy (NIRS) [39]. Finally, accurate electrical head models are needed for more accurate 
interventions, such as with Transcranial Electrical Stimulation (TES) and Transcranial Magnetic 
Stimulation (TMS) in neurorehabilitation for stroke and TBI patients, treatment of depression and 
other neurological disorders [17]. Although the specific issues vary in each of these applications, an 
accurate database of electrical head models could allow neuroimaging and neurointerventional 
technologies to be extended more accurately to work with children. 
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